Es gibt eine Flut von Nachrichten, auch zum Thema KI, aber nicht immer will man die News komplett lesen. Aber das weiß man oft erst, wenn man den Artikel gelesen hat, also zu spät. Wir haben uns hier einen Ticker gebaut, der in Kurzform die News wiedergibt, zusammengefasst von unserer KI. Das teilen wir gerne mit Euch!
Aktuell läuft unsere Testphase, das KI-Training! Wir freuen uns über Feedback. Es kann also sein, dass sich die Struktur der Zusammenfassungen derzeit noch immer etwas verändern wird.
News-Team: ki-post@jobfellow.de
ChatGPT-Optimierung: Mit "Jobs to be done" in KI-Antworten sichtbar werden
Der Artikel beschreibt, wie Unternehmen auf den Wandel von Google-Suchen zu KI-Chatbot-Anfragen reagieren müssen. Da Tools wie ChatGPT und Perplexity Inhalte selbst kuratieren, entsteht mit "LLMO" (Large Language Model Optimization) eine neue Form der SEO, die auf Relevanz statt nur auf Keywords abzielt.
Als zentrale Methode wird das "Jobs to be done"-Framework (JTBD) von Clayton Christensen vorgestellt. Die These: Kund:innen "beauftragen" ein Produkt, um ein Problem zu lösen ("Man kauft keinen Bohrer, sondern das Loch in der Wand"). Inhalte müssen also das zugrundeliegende Bedürfnis statt nur das Keyword (z.B. "Businessplan Vorlage") ansprechen.
Der Artikel schlägt einen 3-Schritte-Prozess zur Entwicklung KI-optimierter Inhalte vor:
-
Potenzial im Unternehmen finden: Support-Anfragen, Sales-Gespräche und Kunden-Chats analysieren, um die "Schmerzpunkte" und die exakte Sprache der Kund:innen zu identifizieren.
-
Echte Userfragen recherchieren: Foren (Reddit, Gutefrage.net), Q&A-Tools (AnswerThePublic) und Kundenrezensionen (besonders 1- und 5-Sterne) nutzen, um ungelöste "Jobs" zu finden.
-
Kernprobleme formulieren: Die gefundenen Probleme clustern (ggf. mit KI-Hilfe) und klare JTBD-Sätze formulieren (Situation, Motivation, Ergebnis). Beispiel: "Wenn ich vor Investor:innen präsentiere [Situation], will ich kompetent wirken [Motivation], damit ich Vertrauen aufbaue [Ergebnis]."
Umsetzung in der LLMO-Strategie:
- Headlines: Problem-Lösungs-Muster nutzen (z.B. statt "Die 10 besten PM-Tools" lieber "Keine Deadlines mehr verpassen: So organisierst du dein Team").
- Inhalt & Aufbau: Logische Schritt-für-Schritt-Lösungen anbieten, da LLMs dies als Qualitätssignal erkennen.
Fazit: LLMO verbindet den JTBD-Ansatz mit den Mechanismen von KI-Chatbots und schafft so eine problemorientierte, präzise und hilfreiche Content-Strategie.
Der Artikel bietet eine starke strategische Antwort auf KI-Suchmaschinen, lässt aber praktische Hürden aus:
-
Konkurrenz um "den einen Job": Das JTBD-Framework ist nicht neu. Wenn alle relevanten Anbieter das eine Kernproblem identifizieren, konkurrieren alle um dieselbe KI-Antwort. Es fehlt die Analyse, wie KI dann entscheidet.
-
Abhängigkeit von der KI-Blackbox: Der Artikel suggeriert, dass problemorientierter Content "bevorzugt" wird. Dies bleibt eine Annahme, da die genauen Ranking-Faktoren der LLMs (wie bei Google) intransparent sind.
-
Gefahr der Monotonie: Wenn alle Inhalte einer logischen Schritt-für-Schritt-Struktur folgen, um der KI zu gefallen, könnte dies zu einer extremen Vereinheitlichung und Verarmung der Content-Vielfalt führen.
-
Fehlende technische LLMO-Aspekte: Der Artikel fokussiert sich nur auf die (wichtige) inhaltliche JTBD-Strategie, vernachlässigt aber technische LLMO-Aspekte (z.B. strukturierte Daten, semantische Auszeichnung), die ebenfalls entscheidend für die Sichtbarkeit sein dürften.
Dieser Artikel ist dein Fahrplan, um im "KI-Zeitalter" überhaupt noch gefunden zu werden. Als dein jobfellow solltest du das sofort umsetzen:
-
Hör auf, in Keywords zu denken: Das ist die wichtigste Lektion. Wenn du Inhalte erstellst (Website, Blog, Social Media), frage nicht "Wonach suchen die Leute?", sondern "Welches Problem (JTBD) haben sie?".
-
Werde zum Problemlöser: Dein Wert liegt nicht mehr darin, Informationen aufzulisten ("Die 10 besten..."), sondern darin, eine klare Schritt-für-Schritt-Lösung für ein echtes Problem anzubieten.
-
Hör deinen Kund:innen/Kolleg:innen zu: Die Goldgrube für Content sind laut Artikel Support-Anfragen, Sales-Gespräche und Foren. Nutze diese Quellen, um die echte Sprache deiner Zielgruppe zu lernen und anzuwenden.
-
Nutze KI, um KI zu optimieren: Verwende ChatGPT (wie im Artikel vorgeschlagen), um deine Recherche zu clustern und die Kernprobleme schneller zu identifizieren.



